
Deep Lyapunov Functions and Symbolic Regression

Sungyoon Kim

Department of Electrical and Computer Engineering

Seoul National University

Abstract

Using machines to assist mathematicians in their research has met a new phase

with the huge success of deep learning. One can think of applying deep learning to

find a Lyapunov function for the given equilibrium of a dynamics, but current deep

learning methods cannot help to find an analytic form of the Lyapunov function,

thus failing in helping mathematicians actually prove stability. In this paper, we

apply advanced symbolic regression techniques on the learned Lyapunov function to

find the analytic form of it. The method can be widely used for complicated, high

dimensional dynamics, thus can serve as a useful tool when the Lyapunov function

of the given dynamics is unknown.

1 Introduction

The tremendous success of deep learning led mathematicians to use the technology on solving

problems that seemed impossible in the past. Solving PDEs with neural networks became a newly

rising field([1],[2],[3]), and there has been pioneering works to use deep learning models to find the

hidden invariance behind a dynamical system([4]), or to find counterexamples of a combinatorics

problem ([5]). It is no lie to claim that we are living in a world where machines can work as a decent

assistant to mathematicians.

For mathematicians that study dynamics, understanding the stability of the equilibrium of a

given dynamical system is an important problem. One way to prove that an equilibrium is stable is

the so-called ‘direct Lyapunov method’, where a mathematician should carefully design a Lyapunov

function V that satisfies

V (Xe) = 0, V (X) > 0, DV (X) < 0 or DV (X) ≤ 0 ∀X ∈ N −Xe.

Here, Xe is a given equilibrium, and N is a certain neighborhood of Xe. When DV (X) < 0 holds, Xe

becomes the asymptotic stable equilibrium, and when DV (X) ≤ 0 holds, Xe becomes the Lyapunov

stable equilibrium. For some dynamics the Lyapunov function is intuitive, but for others finding it

can be a very difficult problem.
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It may not be a surprise that there are works to automatically approximate Lyapunov functions

with deep learning. In fact, there have been numerous works that finds Lyapunov function of an

equilibrium with deep learning, and use the learned function for stable control. However, one intrinsic

limitation of deep Lyapunov methods is that we cannot strictly prove whether a given equilibrium

is stable or not. Even after sufficient amount of training, and after we obtain the resulting function

V (X; θ∗) that satisfies the constraints for every training data, it may fail to meet the given conditions

outside the sampled data. Unless we use very simple networks and analytically prove the given

conditions, there is no way we can solidly claim that we have truely found the Lyapunov function.

Though finding the Lyapunov function with deep learning may serve a prominent role engineering,

its application to pure math is simply implausible.

For machines to help mathematicians prove the stability of a given equilibrium with direct Lya-

punov method, they should be able to provide at least the analytic form of the obtained Lyapunov

function. Genetic programming and symbolic regression can serve as promising ways to solve such

problem. There has been a few works that aims to find an analytic form of the Lyapunov function by

genetic programming. However, genetic programming is highly volatile and frequently fails when there

are too many variables. Thus, those methods only work for very low-dimensional, simple dynamics.

In this thesis, I aim to present a novel method that can provide an analytic form of more com-

plicated, higher dimensional dynamics. The method is rather simple: First, approximate a Lyapunov

function with deep neural networks. Second, use advanced methods in symbolic regression to find the

analytic form of the Lyapunov function. With the method we can fully exploit the expressionabil-

ity of neural networks, and can evade the problems that genetic algorithms have by using symbolic

regression algorithms that are not based on genetic programming.

The rest of the thesis is divided into three parts: In Preliminaries, I give a survey on existing deep

Lyapunov methods, their application to stable control. I also give a survey on symbolic regression and

how they can be applied to find an analytic form of the Lyapunov function. In Experiments, I propose

a novel algorithm to find the analytic form of Lyapunov functions, and provide extensive experimental

results where the algorithm successfully finds either the vanila / strict Lyapunov function. At last,

in Conclusion, I will summarize the work and present possible further research topics.

2 Preliminaries

2.1 Deep Lyapunov Methods

This Section will cover different methods to approximate Lyapunov functions with neural networks

and provide an application where deep Lyapunov functions are extensively used. In Section 2.1.1, I

will provide the necessary backgrounds of deep learning. After that, in Section 2.1.2, I will illustrate

the general idea behind deep Lyapunov methods and their intrinsic limitations. In Section 2.1.3

I will introduce some earlier approaches that proposed to estimate Lyapunov functions with neural

networks, and drawbacks of these approaches. At last, in Section 2.1.4, I will elaborate on the modern

studies that aim to overcome the drawbacks, along with how deep Lyapunov functions are extensively

applied in the field of control and robotics.
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2.1.1 Preliminaries in deep learning

One of the primary objectives of deep learning is to find a good approximation of a function

f : Rd → R from a class of functions F . A typical formulation of a deep learning problem is as the

following:

Suppose f : Rd → R, F is given as F = {V (x; θ)| θ ∈ RN}(where θ denotes the trainable

parameters), and we have sampled data D = {(xi, yi)| i = 1, 2, ..., n} from the distribution D =

{(x, f(x))| x ∈ Rd}. Find the optimal parameter θ∗ that minimizes

L(θ) =
1

n

n∑
i=1

l(V (xi; θ), yi),

where l denotes the error between V (xi; θ) and yi. An example of l can be the distance between

V (x; θ) and y, given that Y is a metric space.

V (x; θ) is given as a composition of ‘multiple layers’, which is the reason why we call these models

‘deep neural networks’. For each layer k = 1, 2, ..., n, a vector x in Rdk−1 is given as an input. Here,

dk is called the size of the hidden unit of layer k when k ≥ 1, and d0 is simply the size of the input.

The input passes through an affine transformation

Ak(x) = Wkx+ bk,

where Wk ∈ Rdk−1×dk and bk ∈ Rdk , and then passes through a nonlinear function σ at each layer.

tanh, relu(max{x, 0}), sigmoid are the conventionally used nonlinearities. When there are n layers,

we have affine transformations A1, A2, ..., An with the corresponding parameters (W1, b1), (W2, b2),

..., (Wn, bn). The overall architecture is given as

V (x; θ) = An(σ(An−1(...(A2(σ(A1(x)))...),

where the trainable parameters θ are {W1, b1,W2, b2, ...,Wn, bn}.
The training process is mostly done by optimization methods which are often modifications of

gradient descent. As the size of the data is too large, we cannot apply vanila gradient descent on

the loss itself. Instead, at each step of the optimization process, we sample smaller ‘batches’ of the

data and apply gradient descent on the batch. The appropriate batch size is a hyperparameter that

has different optimal values for different tasks. The learning rate, momentum, and epochs are also

hyperparameters related to the training process: The Learning rate is the size of the step that the

optimizer uses for gradient descent, the momentum is a parameter that momentum-based optimizers

such as Adam use, and the epoch is the number of repetitions to see the whole data.

2.1.2 Deep Lyapunov Methods: A general explanation

Suppose the dynamics

X ′ = F (X).

is given, where X ∈ Rd. Without loss of generality, let’s say the dynamics attains equilibrium at

X = 0. As briefly explained in the introduction, the objective of direct Lyapunov analysis is to
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analyze the stability of a given equilibrium by finding an appropriate Lyapunov function V : Rd → R.
When there is a function V that satisfies

V (0) = 0, V (X) > 0, DV (X) < 0 ∀X ∈ N0 − {0}. (1)

It can be shown that the equilibrium X = 0 is asymptotically stable. Here, DV (X) is the directional

derivative of V at X, and N0 is a certain neighborhood of X = 0. Similarly, when there is V that

satisfies DV (X) ≤ 0 instead of DV (X) < 0, we can show that X = 0 is stable in the sense of

Lyapunov.

Deep Lyapunov methods aim to approximate the Lyapunov function of a given equilibrium by

training a neural network with data sampled from the dynamics. The idea behind deep Lyapunov

methods is using a specially designed loss function L(θ) that penalizes V (X; θ) when it violates the

conditions of (1). Though the design of loss functions may vary, they are essentially derived from the

conditions of (1).

To illustrate further, I will give an example of a naive loss function L(θ) and how Lyapunov

functions can be learned by the training process. The most naive loss function one can think of,

which is referred to as the ‘Lyapunov risk([6])’, is given as the following:

L(θ) =
1

n

n∑
i=1

(V (0; θ)2 +max{0,−V (Xi; θ)}+max{0,∇XV (Xi; θ) · F (Xi)}). (2)

Here, {(Xi, F (Xi))| i = 1, 2, ..., n} are the data points sampled from the phase space. Mini-

mizing V (0; θ)2 decreases the absolute value of V (0; θ), which makes the parameters move toward

satisfying constraint (1). Similarly, to minimize max{0,−V (Xi; θ)}, increasing V (Xi; θ) above 0 is

beneficial, which enforces the parameters to satisfy the positive definiteness of V . At last, to min-

imize max{0,∇xV (Xi; θ) · f(Xi)} = min{0, DV (Xi)} , decreasing DV (Xi) under 0 is beneficial,

which enforces the parameters to satisfy the negative definiteness of DV . Thus, when we enforce θ

to decrease the loss function L(θ), θ is enforced to satisfy the constraints in (1), and the resulting

function V (X; θ∗) after the training process becomes a likely candidate of the Lyapunov function at

equilibrium X = 0.

Using the naive loss function, we can train a simple three-layer neural network to obtain the

Lyapunov functions of the dynamics x′ = y,

y′ = −x.
(3)

at (x, y) = (0, 0). Here, I used a three-layer network with hidden units [128, 32, 8], each followed by

a softplus activation function. For training, I used the ADAM optimizer with a learning rate of 1e-3,

a batch size of 256, and proceeded training for 10 epochs. All the training was done using Google

Colab. The value of the trained Lyapunov function V (x, y) and the directional derivative DV (x, y)

can be seen below. The surface corresponds to V (x, y), and the wireframe corresponds to DV (x, y).

We can see that the learned Lyapunov function satisfies the constraints V (X) ≥ V (0), V (0) ≈ 0

and DV (X) ≤ ϵ where ϵ ≈ 0.001, though V (0) = 0 and DV (X) ≤ 0 is not strictly satisfied. Even

so, we can see from Figure 8 that the learned function shows properties that a Lyapunov function is

expected to have.
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Figure 1: Learned Lyapunov function and its directional derivative

For very simple dynamics such as (3), we can approximate the Lyapunov function with a naive

approach as in (2). However, for larger and more complicated systems, a more stable and scalable

strategy for training is necessary, which motivates using different mathematical properties of Lya-

punov functions to design the loss function.

Even though we use more sophisticated training strategies, the training process of Lyapaunov

functions may fail. One possible reason is that the equilibrium X = 0 is not stable, thus there doesn’t

exist a function that satisfies the conditions of Lyapunov functions. Another possibility is that the

training data is insufficient and the training process has not converged properly. At last, the model

structure or hyperparameters may have been unsuitable. It is the job of the engineer who trains the

model to decide what the issue is, and make decisions on the stability of the equilibrium.

2.1.3 Some Earlier approaches

The earliest approaches in the literature give theoretical possibilities of neural networks approx-

imating Lyapunov functions([7],[8],[9]). The motivation is straightforward, as neural networks are

universal function approximators([10]) and can approximate any function given sufficient number of

nodes. [7] is the earliest paper to use neural networks to understand a given dynamics. In [7], the

author suggests a specially designed neural network of which he calls the ‘Lyapunov Machine’, and

discusses how the machine can solve problems in nonlinear dynamics, such as testing global asymp-

totic stability and isolating domains of local asymptotic stability. The author also demonstrates that

these Lyapunov Machines can be trained to approximate Lyapunov functions, yet not showing any

empirical results. Although [7] is the first to use neural networks to find Lyapunov functions, the

method is distinct to the typical approach when we use neural networks to approximate functions.

The approach that we typically use was first introduced in [8]. In [8], the authors introduce the con-

cept of multi-linear perceptrons(or MLPs for short), and show the possibility of MLPs approximating

Lyapunov functions. Another approach in [9] suggests recursive neural networks as an approximator

for Lyapunov functions. The algorithm in [9] is as follows: First, sample a discrete trajectory x(tk),

and calculate the value V (tk) at time tk. If V (tk+1) < V (tk), do nothing. If not, adjust the weights

of neural networks to decrease the value of V (tk+1)− V (tk). Repeat until V (tk+1) < V (tk) holds for

sufficiently large number of starting points. The algorithm exploits the fact that DV (X) < 0 should
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hold by enforcing V (tk+1) < V (tk) for the sampled trajectories(thus, the value of the Lyapunov func-

tion should strictly decrease with the trajectory), and also proposes to use recurrent neural networks

based on the fact that the trajectory of the dynamic system is also recursive.

After the earliest research that proposes the possibility of neural networks as approximators of

Lyapunov functions, there have been several works that uses neural networks to train very simple

neural networks and find appropriate Lyapunov functions of a given equilibrium([11],[12]). In [11],

the authors use a sufficient condition for Lyapunov functions to train a neural network with a single

hidden layer. Specifically, we know that when there exist function V (X) : Rd → R that satisfies

V (0) = 0,∇XV (0) = 0,∇2
XV (0) ≻ 0,−∇2

XDV (X) ≻ 0. (4)

then the function V (X) becomes the Lyapunov function of the given dynamics X ′ = F (X). The

property can easily be proved by the second derivative test on V (X) and DV (X). The authors of

[11] find analytic formulae for V (0), ∇XV (0), ∇2
XV (0), and ∇2

XDV (X) to find the constraints given

to the parameters of the neural network. Finding the analytic form is possible as they use a very

simple network with a single hidden layer. To enforce positive definiteness of the Hessian matrices,

they use a fitness function that has greater value when the Hessian is positive definite. They suggest

two examples bases on the eigenvalues λi of the Hessian: One is
n∑

i=1

eλi , and another is
n∑

i=1

min{λi, 0}.

After that, they use genetic algorithms as an optimizer to increase the fitness function, subject to

the constraints in (4). They also provide numerical experiments of their purposed method, and shows

that their method can help find a Lyapunov function for various systems.

[12] uses approximation theory to first choose a basis of approximators, and use neural networks

to find the weights of the linear combination of the basis elements. From Stone-Weierstrass theorem,

we know that the family of polynomials serve as a good approximator for continuous functions. Using

the fact, the authors fix the neural network as a polynomial with unknown coefficients, and train the

neural network to find only the coefficients. To train the network, [12] uses the fact that the Lyapunov

function should decrease with the positive trajectory, similarly to the approach in [9]. The algorithm

they suggest is as below:

Algorithm 1 Polynomial regression of Lyapunov functions([12])

1: for p = 0, 1, 2, ... do
2: Obtain trajectories Xp(tk) for k = 0, 1, ..., N
3: Xp(tN ) ≈ 0 should hold
4: end for
5: for k = 0, 1, 2, ..., N do
6: Assign V (Xp(tk)) = αp,k < αp,k−1

7: Adjust the parameters so that V (Xp(ti)) = αp,i holds for all p, i ≤ k
8: if V ′(X) < 0 for all X then
9: Break For

10: end if
11: end for

Using the algorithm, [12] gives analytic form of Lyapunov functions for given dynamics. An
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example that [12] gives is finding the Lyapunov function ofx′ = −x+ y,

y′ = (x+ y) sin(x)− 3y.
(5)

At equilibrium (0, 0). They choose a quadratic polynomial

V (x, y) = a1x
2 + a2xy + a3y

2,

as a candidate Lyapunov function, and train with algorithm 1 to find the appropriate coefficients a1,

a2, and a3. After 25 iterations they find the appropriate values to be a1 = 0.807, a2 = −0.0581, a3 =

1.0144, and numerically show that the obtained Lyapunov function satisfies positive definiteness and

the directional derivative satisfies negative definiteness.

Figure 2: Learned Lyapunov function and its directional derivative of system (5) (Figure from [12])

Though the approaches in [11] or [12] gives analytic form expressions of the Lyapunov function,

the method is not generalizable to complex dynamics, i.e. dynamics that does not have Lyapunov

functions of polynomial expression, or of a single layered neural network. Also, these methods are

not scalable, as the number of data needed grows exponentially with the dimension of states. Modern

approaches mostly aim to address these issues, by using deep neural networks and inventing new

techniques that make the training more stable and scalable.

2.1.4 Modern approaches

After the tremendous success of deep learning, using neural networks to approximate Lyapunov

functions have recently gained much attention. The most prominent work is [6], which presents a

modern baseline of approximating Lyapunov functions with neural networks and applying them in

the field of control. In [6], the authors define a so-called ‘Lyapunov-risk’, which is exactly as the naive

loss function that was introduced in Section 2.1.2. Then they jointly train a neural network V (X; θ)

and a feedback controller u(X). The parameters θ and u is updated so that the overall Lyapunov risk
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L(θ, u) =
1

n

n∑
i=1

(V (0; θ)2 +max{0,−V (Xi; θ)}+max{0,∇XV (Xi; θ) · Fu(Xi)}),

for dynamics with control X ′ = Fu(X) is minimized. Thus, when the learning is finished, V (X; θ)

becomes the Lyapunov function of the dynamics X ′ = Fu(X) for properly learned control function

u(X), which means that u(X) is a control input that makes X = 0 asymptotically stable.

In addition to learning, the authors use a ‘falsifier’, which is a module that finds counterexamples

on the state space that violates the Lyapunov conditions. The Lyapunov falsification constraint is

given as a first-order boolean expression:

Φϵ(X) = (∥x∥ > ϵ) ∧ (V (X) ≤ 0 ∨DV (X) ≥ 0), (6)

Here, the condition ∥x∥ > ϵ exists only for numerical concerns, and the latter term of the boolean

expression is merely a negation of the Lyapunov conditions. The solution to the boolean constraint

can be found by SMT solvers such as dReal([6]). The overall algorithm can be found at algorithm 2.

Algorithm 2 Neural Lyapunov Control([6])

1: function Learning(X,f ,qlqr):
2: Initialize the feedback controller u to qlqr
3: for p = 0, 1, 2, ... do
4: Compute Lyapunov risk L(θ, u)
5: Update the parameters θ, u with stochastic gradient descent
6: end for
7: return Vθ, u
8: end function
9: function Falsifier(f ,u,Vθ,ϵ,δ):

10: Encode conditions using (6)
11: Using SMT solver with δ to verify the conditions
12: return satisfiability
13: end function
14: function Main( ):
15: while Satisfiable do
16: Add counterexamples to X
17: Vθ, u ← Learning(X, f, qlqr)
18: CE ← Falsifier(f ,u, Vθ, ϵ, δ)
19: end while
20: end function

With the training process and falsifier module, [6] succeeds in finding stable control for problems

such as inverted pendulum, wheeled vehicle path following, N-link planar robot balancing, with larger

region of attraction compared to classical methods using SOS/SDP techniques.

[6] led to follow-up works that aims to improve the method by modifying the structure of learning

or by improving the verification process([13],[14],[15]). In [13], the authors employ some minor changes

to the method in [6] to improve performance. First, the authors use leaky-Relu functions instead of

Relu(max{x, 0}) functions in their loss. To enforce the conditions V (X) ≥ 0 and DV (X) < 0, they

use the leaky-relu function LR(p, a) defined as
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LR(p, a) =

p if p ≥ 0,

ap otherwise,

and define the Lyapunov risk as

L(θ,X) =
1

n

n∑
i=1

LR(DV (Xi) + ϵ, a) +
1

n

n∑
i=1

LR(−V (Xi) + ϵ, a).

Using the leaky-relu function is beneficial, as the function induces training also when the constraints

are satisfied, leading to an improvement in learning and a more numerically robust candidate Lya-

punov function([15]). They also divide the boolean condition in (6) to two clauses, and erase the

∥x∥ > ϵ term to enforce full asymptotic stability near the origin. At last, when the counterexam-

ples are generated, points in the neighborhood of each counterexample is also added to the overall

dataset, which leads to a faster communication between the learner and falsifier. By using the tech-

niques above, the authors are able to learn Lyapunov functions for systems that do not admit a

global polynomial Lyapunov function faster than the existing approaches. They are also able to learn

Lyapunov functions that cope with a larger domain than the previous approaches.

Some approaches aim to find the counterexamples by transforming the problem into equivalent

optimization problems([14], [15]). In [14], the authors concentrate on piecewise linear dynamics, and

aim to find a piecewise linear Lyapunov function for the dynamics. Similar to the approach in [6],

they use the concept of Lyapunov risk and falsifiers. The Lyapunov risk defined in [14] is

L(θ,X1, X2) = w1

n∑
i=1

max{0, ϵ1|X1,i| − V (X1,i; θ)}+ w2

n∑
i=1

max{0, DVθ(X) + ϵ2V (X2,i; θ)},

which is used to enforce ϵ1|X| ≤ V (X; θ) and DV (X; θ) ≤ −ϵ2V (X; θ). The condition V (0) = 0 is

automatically satisfied, as they use Relu activation without bias. Here, ϵ1 and ϵ2 are hyperparam-

eters that are set at the beginning of learning. Different from [14], they use Mixed Integer Linear

Programming to find the counterexamples instead of SMT solvers. For an appropriate domain S that

includes the equilibrium X = 0, they define two different optimization problems:

max
X∈S

ϵ1 ∥X∥ − V (X; θ) and max
X∈S

DV (X; θ) + ϵ2V (X; θ).

We can change the problem into MILP form as V (X; θ) is piecewise linear and S is a polytope. By

solving the optimization problem, we can obtain the values of X that violates ϵ1|X| ≤ V (X; θ) or

DV (X; θ) ≤ −ϵ2V (X; θ). By using MILP to find the counterexamples, the authors are able to find

appropriate piecewise-linear Lyapunov functions faster than the previous approaches. In [15], the

authors formulate the counterexample finding problem into an equivalent MILP problem as in [14],

but they use a feedback controller parametrized by a neural network.

In addition to works aiming to improve neural Lyapunov control, there has been works to fun-

damentally improve the learning process by cleverly designing the network architecture, and provide

guarantees for the approximation power of the proposed architecture using tools from function ap-

proximation theory([16],[17]). [16] suggests a new architecture that the positive definiteness of V (X; θ)
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is guaranteed. Specifically, they suggest

V (X; θ) = |Φθ(X)− Φθ(0)|+ ᾱ ∥x∥ , (7)

as a new parametrization for neural Lyapunov functions. Using the parameterization, two conditions

V (0; θ) = 0 and V (X; θ) ≥ 0 are automatically satisfied, and the Lyapunov risk is simplified to

L(θ,X) =
1

n

n∑
i=1

max{DV (Xi) + γ ∥Xi∥ , 0}2, (8)

to enforce only the negative orbital derivative condition. With simplified risk, the learning procedure

becomes comparably faster than other existing deep Lyapunov methods(Figure 3). Moreover, by using

the algorithm in [16], the authors are able to train Lyapunov functions of systems with dimension up

to 30.

Figure 3: Learning procedure of different algorithms(Figure from [16]). The Blue line shows how risk
decreases when using the algorithm proposed in [16]. The Red line is when using method from [17],
and the green line is when using method from [6].

In addition to the empirical improvements by changing how V (X; θ) is parametrized, the authors

also provide a proof for the guarantee to find a Lyapunov function when the size of the data points

are sufficiently large. Specifically, the authors prove that for properly chosen γ and number of data

proportional to O(ϵ−d), the minimizer of the proposed Lyapunov risk (8) can be approximated by

the parametrization of (7).

Another modern approach exploits ‘small gain theory’ to design a novel architecture of neural net-

works to approximate Lyapunov functions([17]). The author aims to resolve curse of dimensionality,

i.e. the phenomenon where the number of parameters needed to approximate a function increasing ex-

ponentially with the increase in dimension, by decomposing the Lyapunov function to s sub-Lyapunov

functions.

V (X; θ) =

s∑
i=1

V̂i(X; θi).
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For dynamics where small gain theory is applicable, it is realistic to assume such decomposable

V ([17]).

Then, the author uses s sub-networks to approximate each V̂i(X; θi). The curse of dimensionality

is mitigated, as the needed number of parameters follow O(ϵ−dmax) instead of O(ϵ−d)(when the

dimension of ith subsystem is di and dmax denotes the maximum of d1, d2, ..., dm). With the proposed

method, [17] succeeds in finding the Lyapunov function for the 10-dimension dynamics given by the

vector field

f̂(X) =



−x1 + 0.5x2 − 0.1x2
9

−0.5x1 − x2

−x3 + 0.5x4 − 0.1x2
1

−0.5x3 − x4

−x5 + 0.5x6 + 0.1x2
7

−0.5x5 − x6

−x7 + 0.5x8

−x9 + 0.5x10

−0.5x9 − x10 + 0.1x2
2


.

It is clear that the dynamics is consisted of five independent dynamics that are asymptotically sta-

ble, along with four nonlinearities with small gains. By small gain theory, we can assume that the

Lyapunov function will be decomposable with 5 sub-Lyapunov functions, and by a neural network

architecture that computes each sub-Lyapunov function and summing them, we can approximate an

appropriate Lyapunov function with much less parameters than O(ϵ−d).

2.2 Symbolic regression

Symbolic regression is an approach to machine learning in which both the parameters and the

structure of an analytical model are optimized([18]). To explain further, it is a machine learn-

ing algorithm that learns the analytic expression of a given function f : Rn → R, when data

{(xi, f(xi))∥ i = 1, 2, ..., N} is given. In this chapter, I will introduce different methods for symbolic

regression, and present previous works that uses symbolic regression to generate Lyapunov functions

with analytic form. In Section 2.2.1, I will introduce different methods to accomplish symbolic re-

gression. In Section 2.2.2, I aim to go through works which use genetic algorithms to automatically

find the analytic form of Lyapunov function.

2.2.1 Different methods of symbolic regression

The classical methods to perform symbolic regression are based on genetic programming. The

first paper to apply genetic programming to symbolic regression dates back to 1994([19]), which is

referred to as ‘Koza-style symbolic regression’. The method encodes each symbolic expression into

a tree structure(see Figure 4), where the leaf nodes denote the symbols and constant expressions,

and the inner nodes denote the operation such as +,−, ∗, /. With the encoding, a standard genetic

programming algorithm is run to find the best fitting expression for a given input-output pair of data.

The procedure of genetic programming is as following: First, we generate an initial population of
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random expressions(thus, trees) composed of the primitive functions(such as +,−, ∗, /, exp) and ter-

minals(they may be inputs/constants) of the problem. This becomes generation 0 of the expressions.

Then, we calculate the fitness of each expression in generation 0. The fitness function can be defined

according to the objective of learning, and the paper uses MSE error to fit a given data. After that,

the expressions at generation 0 are used to create new expressions for generation 1, by going through

‘reproduction’ or ‘crossover’ with the probability proportional to the fitness they have. Reproduction

is passing the exact same expression through the next generation, and crossover is creating offsprings

that inherits partial traits from both parent expressions by exchange subtrees of parent expressions.

An example of crossover can be found in Figure 4. Here, the two expressions 0.234Z + X − 0.789

and ZY (Y + 0.314Z) are parent expressions, and offspring expressions Y + 0.314Z +X − 0.789 and

0.234Z2Y . are generated by exchanging the subtrees 0.234Z and Y + 0.314Z.

Figure 4: Example of crossover (Figure from [19])

The procedure is repeated until the algorithm arrives maximum generation, or the fitness has

reached maximum value. As reproducing and crossover happens proportional to the fitness, the

averaged fitness increases as generations pass. Also, the probability to find the best candidate for

a given function increases as generations pass. [19] gives successful results on finding a closed-form

expression of a 11-multiplexer and also presents an application in economy.

Previous works on symbolic regression aimed to improve the genetic programming based approach

([20],[21],[22]). [20] uses the concept of ‘age’ to advance genetic programming. Each expression has

its own age, which is the number of generations it has passed through. The expressions are divided

into several groups regarding their age, and crossover only happens for expressions within the same

group or the group right before. Also, when an expression is moved from the youngest group, new

expressions randomly replace the old ones. By restricting the competition within the expressions

with same age group and regularly introducing new expressions, [20] is able to solve the problem

of premature convergence. [21] goes a step further: instead of regularly advancing the expressions

by age, the expressions move on a 2-dimensional plane, where the x-axis and the y-axis denotes the

fitness and age of the expression, respectively. Thus, in this scheme, even though two expressions

have different age they may compete according to their fitness. At last, [22] points out that using

the MSE loss as a sole metric to calculate the fitness of expressions may penalize certain expressions

that are particularly beneficial for some inputs, but behave poorly on average. The authors explicitly

exploit those expressions by selecting the best candidates for each possible input and using them as

parent expressions to create offspring for the latter generation.

Though genetic programming can be used as a general tool to find symbolic expressions from
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a given dataset, it is not perfect. One serious drawback is that genetic programming tends to give

expressions that are overly complicated, thus making the expression less interpretable. Some more

recent works aim to find expressions that are less complex, by using ideas from Bayesian statistics

or expected property of the expressions ([23],[24],[25]). [23] suggest a new method to solve symbolic

regression problems with a Bayesian framework. They encorporate prior knowledge to improve ef-

fectively fitting symbolic regression, along with assuming the resulting formula as a fixed sum of

sub-expressions. Using their framework results in comparably more simple expressions than the ones

generated by genetic programming, and the method also needs much less memory. An example of

generated expressions using both genetic programming and bayesian symbolic regression is as Figure

5. It is clear that bayesian methods are superior to genetic programming regarding the simplicity of

generated expressions.

Figure 5: Expressions created by genetic programming and bayesian symbolic regression (Figure from
[23])

[24] and [25] presents ‘AI-Feynman’ and ‘AI-Feynman 2’, a novel symbolic regression algorithm

inspired from physics. The algorithm is motivated by the fact that many expressions that show the

laws of nature have properties that help them easier to be discovered. The properties they suggest are:

(1) Dataset often have physical units that can be used to help symbolic regression. (2) The expressions

are often composed of lower-degree polynomials. (3) The expressions are often composition of simpler

modules. (4) The expressions are analytic. (5) The expressions are symmetric. and (6) The expressions

are often separable with different variables. The algorithm exploits these facts by first testing if the

expression can be written in a simple form, by dimension analysis, testing polynomial regression, and

using brute force to find simple expression of the given function. If the methods fail, the algorithm

approximates the mapping with a neural network, and check if the mapping has properties such as

compositionality, symmetricity, or separability. If such properties hold and the mapping that we want

to express can be decomposed into smaller modules, the algorithm recursively works on each module

to find an expression for individual modules, and then merge them into one.
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To check the modular properties of a given mapping, [25] uses gradients of the neural network.

Here, I will give an example of how the model notices submodules of the mapping. Suppose f : Rd → R
is composed of two mappings g : R → R and h : Rd → R, i.e. f(x) = g(h(x)) holds. Then, when

we check the gradient, we can easily see that ∇f(x) = g′(h(x))∇h(x) holds. Thus, the two gradients

∇f(x) and ∇h(x) are parellel, and finding a function h(x) that has gradient parellel to the mapping

f(x) leads to the compositionability of f . As we have no direct access to f or h, we approximate

them with neural networks and analyze gradients of the neural networks instead.

With the new algorithm, AI-Feynman is able to find symbolic expression to all 100 equations

from the Feynman Lectures on Physics, and successfully expresses 90% of the bonus problems, where

the previous commonly used algorithms such as Eureqa only succeeds in 15% of the problems. The

succeeded expressions include very complicated expressions such as

v = c
(v1 + v2 + v3 + v4)/c+ (v2v3v4 + v1v2v3 + v1v2v4 + v1v3v4)/c

3

1 + (v1v2 + v1v3 + v1v4 + v2v3 + v2v4 + v3v4)/c2 + v1v2v3v4/c4
,

which is the sum of velocity in the sense of relativity. This amazing success shows that the pro-

posed algorithm is effectively finding expressions that are both simple and fit the data well even for

challenging problems.

2.2.2 Finding symbolic expression of Lyapunov Functions

Using genetic programming to find Lyapunov functions is intuitive. Instead of using the MSE loss

as the fitness function, using a fitness function to encourage the expressions to satisfy the Lyapunov

conditions is possible. [26] uses two different fitness function to enforce the Lyapunov conditions. The

first function is given as

fi = −r02−r0(D++V−), (9)

for expression i. Here, r0 denotes the radius of the ball where the conditions of Lyapunov functions

will be checked. For grid points inside the ball, D+ denotes the number of points that violate the

negative semidefiniteness of directional derivative, and V− denotes the number of points that violate

the positive semidefiniteness of the expression. The genetic algorithm aims to decrease the fitness

function in order to satisfy the Lyapunov constraints. Next, the second function

f̂i =
1

1 + 1/ri
, (10)

is used to assess the learned expression. Here, ri is the minimum distance between the origin and the

maximal sublevel set Lv(c) where Lyapunov conditions are satisfied. ri is used as an index to obtain

information of the quality of the learned expression’s region of attraction. Thus, with fitness functions

9 and 10, the genetic algorithm generates Lyapunov functions with large region of attraction.

However, the learned Lyapunov functions are very complex even for simple dynamics. For example,

the learned Lyapunov function of x′ = −y,

y′ = x− y + x2y.
(11)

is given as the expression
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V (x, y) = 1.5124x2 + 1.2(0.6246x+ y − 1.5159 sin(1.0521x))2,

which is almost impossible to be used to prove a stability of (0, 0).

To ameliorate such drawback of genetic programming, the authors in [27] uses grammatical evolu-

tion to find symbolic expression of Lyapunov functions. Grammatical evolution is a method that uses

‘encodings’ rather than ‘expressions’ as individuals in a population. When we decode the encoding

sequence with given grammar rules, we can obtain the expression corresponding to the encoding. As

grammatical evolution is known to produce less complicated answers than genetic programming, the

authors use it to find an analytic form of Lyapunov functions. They are able to find a simple form of

Lyapunov function for dynamics such asx′ = y,

y′ = −x− x2y.
(12)

where the learned Lyapunov function is

V (x, y) = x2 + y2.

With the learned Lyapunov function, it is possible to prove that (0, 0) is asymptotically stable by

using LaSalle’s invariance principle. However, there is no analysis on higher dimension dynamics in

[27].

3 Experiments

In this Section, I will first describe the novel algorithm that is used to find an analytic form of the

Lyapunov function for a given equilibrium of a dynamic system. Then I will briefly provide the details

of the experimental settings, and provide various examples where the proposed method succeeds in

finding the Lyapunov function for the equilibrium.

3.1 Algorithm

The algorithm is divided into two steps: Learning the Lyapunov ”function”, and learning the

analytic form of that function. For the first step, I used the approach in [16] due to its simplicity

in the loss function and its ability to approximate Lyapunov functions of very high dimensional

dynamics. However, I used a slightly different structure for parametrization of Lyapunov functions,

V (X; θ) = (Φθ(X)− Φθ(0))
2
+ ᾱ ∥x∥2 ,

for a neural network Φθ(X). The modification was made to exploit the gradient method in pytorch.

For the training the empirical loss

L(θ,X) =
1

n

n∑
i=1

max{DV (Xi) + γ ∥Xi∥ , 0}2,
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was used, identical to [16]. Batchwise gradient descent was applied during learning, and Adam opti-

mizer was used to train the neural network.

For the second step, I sampled the points (Xi, V (Xi, θ)) where Xi are points near the equilibrium

to train the symbolic regression algorithms. I used two different symbolic regressors: Pysr([28]), a

genetic algorithm based python symbolic regression package, and AIFeynman([24]), a brute-force

based symbolic regression algorithm. Pysr was used at first to find simple relationship between Xi

and V (Xi, θ), and AIFeynman was used to find further more complicated relation that Pysr fails to

discover.

The summary of the proposed method is as Algorithm 3.

Algorithm 3 Proposed Algorithm

Require: N , M , lr, ᾱ, γ, B
1: for p = 0, 1, 2, ..., N − 1 do
2: Sample data (Xp, F (Xp)) for a given dynamics near equilibrium
3: end for
4: while L(θ,X) > 1e− 4 do
5: Construct a batch XB of size B
6: θ ← AdamOptimizer(θ, lr,∇θL(θ,XB))
7: end while
8: for p = 0, 1, 2, ...,M − 1 do
9: Sample data (Xp, V (Xp; θ)) for training of symbolic regressors

10: end for
11: Use Pysr to find an analytic form of V (Xp; θ)
12: if Pysr fails then
13: Use AIFeynman to find an analytic form of V (Xp; θ)
14: end if

3.2 Experimental settings

All experiments were done using Pytorch in Python 3.9 with processor AMD Ryzen 7 5800H

with Radeon Graphics 3.20 GHz, and a neural network of depth 5 and width 10 was used for all

experiments. For Adam optimizer I used a learning rate of 1e− 3 and β1 = 0.9, β2 = 0.999, and used

a batch size B = 32, number of data for training symbolic regression as M = 1000. The parameters

N, ᾱ, γ were crucial to training, and I had to use different values for different problems. The values

of the hyperparameters for each experiment can be found in table 1.

Dynamics N ᾱ γ
2D Harmonic Oscillator 12800 0.1 0.01

Pendulum 128000 0.1 0.1
Damped Pendulum 12800 0.01 0.1
Example 2 from [27] 12800 0.01 0.01

2D Curve track from [16] 12800 0.1 0.1
sin(x) sin(y) example 12800 0.1 0.1

Lorenz 25600 0.01 0.1
High order harmonic oscillator(4D) 128000 0.1 0.1

Table 1: Hyperparameters for each experiments
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A thorough explaination on each dynamics will be given in the next Section.

3.3 Examples

In this Section I will show various applications of the proposed algortihm, and how it can be used

to prove the asymptotic stability of a given equilibrium

3.3.1 Classic 2D examples

Let’s start with the harmonic oscillator, perhaps one of the most simple 2 dimensional dynamics.

2D harmonic oscillator is given as x′ = y,

y′ = −x.

By the training process, we can obtain the Lyapunov function (but not knowing the analytic form)

as below. We can either use Pysr or AIFeynman to find the symbolic representation of the Lyapunov

function. By using AIFeynman, we can obtain that the learned function V (x, y) = x2 + y2.

Figure 6: Learned Lyapunov function and its symbolic regression for 2D Harmonic Oscillator. The
left Figure shows the learned Lyapunov function, and the right Figure shows the AIFeynman window

Another classical example from physics is the pendulum. The dynamics of the pendulum isx′ = y,

y′ = − sin(x).

which is almost identical to the harmonic oscillator. However, the Lyapunov function(or the conserved

energy) of the dynamics is V (x, y) = 1
2y

2 + (1 − cos(x)), which is not a polynomial thus cannot be

solved by classical methods([11],[12]) that assumes very specific simple form of Lyapunov functions.

However, using the proposed method we can both find a Lyapunov function of the given dynamics

and its closed form identical to the one above. This implies that our method is more versatile, and

can be more widely used to a variety of complex dynamics.
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Figure 7: Learned Lyapunov function and its symbolic regression for Pendulum. The left Figure shows
the learned Lyapunov function, and the right Figure shows list of possible functions suggested by
Pysr

And last, let’s think about the damped pendulum. The dynamics of the damped pendulum isx′ = y,

y′ = −y − sin(x).

and is known to have an asymptotically stable equilibrium (0, 0). In this case, x2 + y2 fails to work

as a strict Lyapunov function, and it becomes a tedious job to find a strict Lyapunov function of

the dynamics. However, by using the proposed algorithm, we can simply check that the asymptotic

Lyapunov function can be approximated as V (x, y) = 2x2 + xy + 2y2.

Figure 8: Learned Lyapunov function and its symbolic regression for Damped Pendulum. The left
Figure shows the learned Lyapunov function, and the right Figure shows the output of AIFeynman

Moreover, we can use the obtained Lyapunov function to prove asymptotic stability of (0, 0).

Using the function, the directional derivative DV (x, y) becomes

DV (x, y) = y(4x+ y)− (y + sin(x))(4y + x) = 3xy − 3y2 − 4y sin(x)− x sin(x).
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Showing that (0, 0) is a local maximum of DV (x, y) suffices to show that (0, 0) is asymptotically

stable(and V (x, y) is the strict Lyapunov function). Let’s use the second derivative test. We know

that

∇DV (x, y) =

[
−(x+ 4y) cos(x)− sin(x) + 3y

3x− 4 sin(x)− 6y

]
,

and

∇2DV (x, y) =

[
4y sin(x) + x sin(x)− 2 cos(x) 3− 4 cos(x)

3− 4 cos(x) −6

]
.

Thus,

∇DV (0, 0) =

[
0

0

]
,

and

∇2DV (0, 0) =

[
−2 −1
−1 −6

]
.

∇2DV (0, 0) has eigenvalues −4+
√
5, −4−

√
5, which makes it negative definite. This means DV (x, y)

becomes negative definite, V (x, y) a strict Lyapunov function, and (0, 0) an asymptotic stable equi-

librium. This example shows that our proposed method can help mathematicians obtain a strict

Lyapunov function in an analytic form and prove the asymptotic stability of an equilibrium.

3.3.2 Some harder examples

We provide further examples to illustrate two points made in the previous Section: The proposed

method is versatile and can find Lyapunov functions not restricted to a polynomial, and can help

find strict Lyapunov functions for systems that do not have trivial Lyapunov functions.

The first example is x′ = − sin(x) cos(y) + cos(x) sin(y),

y′ = − sin(x) cos(y) + cos(x) sin(y).

For equilibrium (π2 ,
π
2 ), we can obtain the Lyapunov function V (x, y) = 2− sin(x)− sin(y) using

the proposed algorithm. By using a similar method done for the damped pendulum case, we can

easily see that V (x, y) is indeed a strict Lyapunov function. We can also intuitively check that near

(π2 ,
π
2 ), DV (x, y) < 0 by using GeoGebra([29]). From Figure 9, we can see that near (π2 ,

π
2 ), the color

of the Figure is gray, meaning that DV (x, y) < 0 in the area. We can analytically show that (π2 ,
π
2 )

is indeed an asymptotic stable point using the same argument as in the damped pendulum. I omit

the proof here.

The second example is the example used in [27]. In [27] the authors present a synthetic dynamicsx′ = y2 − tan(x),

y′ = −y + x.
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Figure 9: Learned Lyapunov function’s symbolic regression and the plot of DV (x, y) on GeoGebra

to assess their proposed algorithm, and find V (x, y) = x2 + y2|y| as a candidate Lyapunov function.

By using my algorithm, we can obtain V (x, y) = x2 + y2 as a strict Lyapunov function for the given

dynamics. For details, see Figure 10

Figure 10: Learned Lyapunov function’s symbolic regression and the plot of DV (x, y) on GeoGebra,
dynamics from [27]

And last, I applied the method to 2D curve example shown in [16]. The dynamics is given asx′ = − sin(y),

y′ = x cos(y)− sin(y).

By using the algorithm, we can obtain V (x, y) = 25x2 − 17xy + 15y2 as a closed form of the strict

Lyapunov function, and by GeoGebra we can check that it is indeed a strict Lyapunov function. For

details, check Figure 12.
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Figure 11: Learned Lyapunov function’s symbolic regression and the plot of DV (x, y) on GeoGebra,
2D curve example

3.3.3 Higher order examples

In this Section, I will present two higher-order dynamics where the algorithm successfully finds

the Lyapunov function. The first example is rather simple, a 4D harmonic oscillator given as

x′ = y,

y′ = −x,

z′ = w,

w′ = −z.

It is clear that V (x, y, z, w) = x2+y2+ z2+w2 is a Lyapunov function for the equilibrium (0, 0, 0, 0).

However, Pysr fails in finding the closed form, as genetic algorithms are prone to failure when there

are too many variables. By using AIFeynman, we can successfully find V as above.

The second example is far more interesting. Here, we aim to analyze the stability of (0, 0, 0) of a

Lorenz system with small Rayleigh number. Specifically, we analyze the dynamics
x′ = 3(−x+ y),

y′ = 1
2x− y − xz,

z′ = −z + xy.

It is known that (0, 0, 0) is an asymptotic stable point when the Rayleigh number is less than 1.

To obtain the analytic form of Lyapunov function, I obtained two different data, (x, z, V (x, 0, z)),

(x, y, V (x, y, 0)) and approximated each. By approximating, I could see that V (x, 0, z) = 2.5(x2 +

xz+ z2) and V (x, y, 0) = 2.3x2 +9xy+20y2. With the result I got the candidate Lyapunov function

V (x, y, z) = x2 + 8.5y2 + z2 + xz + 4xy.

It is clear that V (x, y, z) is positive definite.

By using the candidate Lyapunov function, we can show that (0, 0, 0) is indeed a strict Lyapunov

function. By direct calculation one gets
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Figure 12: Learned Lyapunov function’s symbolic regression, V(x,0,z) and V(x,y,0)

DV (x, y, z) = x2y − 4x2z − 4x2 − 15xyz − 1.5xy − 4xz − 5y2 + 3yz − 2z2,

∇DV (x, y, z) =

x(2y − 8z − 8) + y(−15z − 1.5)− 4z

x2 + x(−15z − 1.5)− 10y + 3z

−4x2 − x(15y + 4) + 3y − 4z

 ,

∇2DV (0, 0, 0) =

 −8 −1.5 −4
−1.5 −8 3

−4 3 −4

 .

The eigenvalues of ∇2DV (0, 0, 0) are approximately −10.5417,−9.3466,−0.1116 thus all smaller than

0, which makes DV (x, y, z) negative definite, V (x, y, z) a strict Lyapunov function, and (0, 0, 0) an

asymptotically stable equilibrium.

4 Conclusion

In this thesis I provided a survey on automatically finding Lyapunov functions of a given dynamic

system, both with deep learning and symbolic regression. I also proposed a novel algorithm that can

find the analytic form of the Lyapunov function without structural presumptions that works for both

2 and higher order dynamics.

Though the work has shown intriguing results on various dynamics, it is yet said to be perfect. For

example, it fails when the Lyapunov function is too complicated: The Lotka-Volterra system given

as the dynamics x′ = x(1− y),

y′ = y(−1 + x).

has a constant of motion V (x, y) = x+y− ln(xy), but both Pysr and AIFeynman failed in finding the

symbolic expression of the obtained Lyapunov function. Also, the deep learning process sometimes

learned a rather complicated Lyapunov function. For instance, for the Lorenz example in Section

3.3.3, there actually is a simpler Lyapunov function V (x, y, z) = x2+3y2+3z2. For further research,
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improving the deep learning process to learn a more simple and less noisy function will be a promising

way to elevate the performance of the given method.

Nevertheless, this work has shown possibility of implementing an algorithm that can help math-

ematicians prove the stability of a given equilibrium with direct Lyapunov method.
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